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Motivation 

• GPGPUs – Accelerators of choice 
• Many supercomputers use them 
• Ideal for large parallel computations 
 
However, large computations involve 
• Large data sets  GPU device memories are smaller, lack 

good virtualization support 
• Data has to be copied in and out of the GPU card  

Memory copy overhead 
 

Programmability and performance tuning have remained to 
be a major issues in GPGPU computing 
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Goals 

• Automatically handle out-of-card computations 

• Design a pipelining system that overlaps the 
kernel computations with data communications 

• Implement above techniques on top of OpenMPC 
(OpenMP to CUDA translator)  

• Automatically port OpenMP codes to multi-GPUs 
attached to a node 

• Provide an online-tuning mechanism to choose 
the performance-optimal pipeline size 
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GPU Device Memory Requirement 

What factors impact the GPU device memory 
requirement and how? 

• Shared data : a single storage is required 

• Private data : storage is required per thread  
GPU grid size makes an impact 

 

Some optimizations increase the memory 
requirement  

• Prefetching (Early copy-in and late copy-out) 

• Pipelining 
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COSP 

Computation Splitting (COSP) 
• Split a large problem into smaller sub-problems 
 memory requirement reduced 

• Are there side-effects?  
 YES, splitting in not always perfect 

–  Segregate data-types 

• Data required by every sub-
problem : MemFused 

• Data required only by a sub-
problem : MemSplittable 
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COSP - Code Example – Scalar Product 
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#pragma omp parallel for shared(D,E,F) private(vec, pos, sum) 

for (vec = 0; vec < NUM_VECTORS; vec++) { 

  sum = 0; 

  for(pos = 0; pos < NUM_ELEMENTS; pos++) { 

   sum += D[NUM_ELEMENTS*vec + pos]* E[NUM_ELEMENTS*vec + pos]; 

  } 

  F[vec] = sum; 

} 

for (split = 0; split < NUM_VECTORS/SplitSize; split++) 

#pragma omp parallel for shared(D, E, F)  

    private(vec, pos, sum) shared(split, SplitSize) 

for (vec = 0; vec < SplitSize; vec++) { 

  sum = 0; 

  for(pos = 0; pos < NUM_ELEMENTS; pos++) { 

    sum += D[(NUM_ELEMENTS *(vec + split*SplitSize))+ pos]  

    * E[(NUM_ELEMENTS * (vec + split*SplitSize))+ pos]; 

  } 

  F[(vec + split*SplitSize)] = sum; 

} 

Split Loop 

Split 



Pipelining 

• Computation Splitting creates pipelining 
opportunities 

• Resources to pipeline : 

– Copy-in channel 

– GPU cores  

– Copy-out channel 

• Maximum speedup – 3* 

 
* Considering different copy-in and copy-out channels  (engines) 
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Pipelining – Achievable Speedup 

• Computation time : tcompute 

• Time required to copy MemFused data : 
tmemFused    (in and out of the GPU) 

• For MemSplittable data, 

–  tci    (data copy-in time) 

–  tco    (data copy-out time) 

• Achievable Speedup 

 
tmemFused + tci + tco + tcompute  

tmemFused + max(tci , tco , tcompute ) 
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Pipelining - Implementation 
• cudaStream : A CUDA abstraction of instruction queues  
• cudaStreams act independently 
• Memory copy requests across cudaStreams get serialized 
• Kernel executions across cudaStreams overlap 
 
For pipelining : 
• Use 2 cudaStreams 
• Create 2 device buffers per MemPrivate Data 
• Create single device buffer per MemShared Data 
• Place memory copy operations for the MemShared Data 

out of the Split Loop 
• Schedule alternate Splits on each cudaStream 
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Extending to Two GPUs 
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Compiler Structure 
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Tuning Objective 

Pipelining benefits 
 

 Equality of pipeline stage sizes 
 
However, static scheme to determine best stage size 
is hard since : 
• GPU systems : Intricate architecture (PCI version, 

#cores, GPU memory BW) 
• Kernel overlaps  Difficult to model 

 
We propose an adaptive runtime tuning system to 
choose the optimal SplitSize 
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Compute Intensive Vs. Memory-Copy 
Intensive 

For Compute Intensive programs, optimal SplitSize ≤ MaxThreads 

For Memory Copy-Intensive programs, optimal SplitSize ≥ MaxThreads 
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Heuristic Algorithm 

On a single Split, 

• Determine the Type of the kernel 

• For Type 1 kernels : Larger SplitSizes work better due to the higher bandwidth usage.  

• For Type 2 kernels : SplitSizes smaller than MaxThreads are the candidates 

• Generate a set of candidate SplitSizes, run each to find the best 

• For Type 3 kernels : Candidate set is much larger. Type 3 is uncommon. 

 

Tuning requires extra runs, but only on a single Split  Tuning overhead is negligible 
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Evaluation 

Setup 
• GPU - Tesla M2090 GPUs (4), 6GB memory, x16 

PCIe link 
• CPU – AMD Opteron Processor 6282, 16 cores, 

2.6 GHz, 64 GB RAM 
 
Benchmarks 
• Kernels – Black Scholes, Monte Carlo, DCT, 

Filterbank, Vector Add, Scalar Product, FFT 
• Applications – CFD, SRAD 
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Scalability 
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Bench 
mark 

DataSize 
(Iteration Space) 

CUDA  
Time (s) 

OpenMPC  
Base Time (s) 

%Copy-in 
Time(s) 

%Copy-
out 

Time(s) 

%Kernel 
Time(s) 

OpenMPC 
Pipelined Time (s) 

Speedup  
Ideal 

Speedup 
Achieved 

Scalar  
Product 

1024 x 1024 0.633 0.88807 

52.19789 0.22676 47.57535 

0.46297 

1.91579 

1.91822 

1024 x1024 x2 1.267 1.7723 0.91496 1.93703 

1024 x1024 x4 ---- ---- 1.73067   

Monte  
Carlo 

1024 x32 0.00537 0.00454 

21.55109 13.71958 64.72933 

0.0037 

1.54489 

1.22733 

1024 x1024 x32 *** 1.79902 1.24699 1.44268 

1024 x1024 x64 *** 3.5924 2.51465 1.42859 

1024 x1024 x128 ---- ---- 5.02565   

Black 
Scholes 

1024 x16 0.00105 0.00158 

46.64777 41.9736 11.37863 

0.00164 

2.14373 

0.96344 

1024 x1024 x128 1.8598 1.22591 0.87698 1.39786 

1024 x1024 x256 ---- 2.457 1.73985 1.41219 

1024 x1024 x384 ---- ---- 2.60183   

`***' represent failure of the code due to larger-than-allowed grid sizes 
used. `----' represent code failure due to out-of-memory data size errors. 



Tuning Performance 
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Compiler Naïve

Tuning Overhead (%)

Naïve scheme – Use 1024 Splits (Heuristically found to be effective) 
 
A static scheme to select SplitSize can not be efficient 



Comprehensive Results 
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Memory Copy-Intensive 

Compute-Intensive 

• Compute-intensive benchmarks show better scalability on multi-GPU 
systems 

• PCIe link forms a bottleneck on memory-copy intensive programs 



Related Work 
Out-of-card computations 
• Single device image for multi-GPUs 
 
Pipelining/Memory related 
• Prefetch 
• Redundant memory transfer removal 
• Asynchronous computations 
 
Execution Models 
• StreamIt based approaches 
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Conclusions 

We presented 

• An automatic computation splitting mechanism, 
COSP, that handles out-of-card computations 

• A mechanism to effectively pipeline the slow CPU-
GPU data copy channels with GPU computation 

• An automatic adaptive runtime tuning system to 
select optimal pipeline stage size 

• A porting scheme to run OpenMP applications on 
multi-GPU systems 
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Future Work 

• Better strategy to deal with irregular 
applications 

• Smart virtualization of the GPU address space 
– exploiting prediction to move data back and 
forth between CPU and GPU memories 
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Thank You! 
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