
Scaling Large Data Computations
on Multi-GPU Accelerators

Amit Sabne, Putt Sakdhnagool,
Rudolf Eigenmann

School of ECE, Purdue University

1

Outline

 Motivation

 Computation Splitting (COSP)

 Pipelining CPU-GPU copies

 Multi-GPU Code Generation

 Adaptive Runtime Tuning

 Evaluation

 Conclusion

2

Motivation

• GPGPUs – Accelerators of choice
• Many supercomputers use them
• Ideal for large parallel computations

However, large computations involve
• Large data sets  GPU device memories are smaller, lack

good virtualization support
• Data has to be copied in and out of the GPU card 

Memory copy overhead

Programmability and performance tuning have remained to
be a major issues in GPGPU computing

3

Goals

• Automatically handle out-of-card computations

• Design a pipelining system that overlaps the
kernel computations with data communications

• Implement above techniques on top of OpenMPC
(OpenMP to CUDA translator)

• Automatically port OpenMP codes to multi-GPUs
attached to a node

• Provide an online-tuning mechanism to choose
the performance-optimal pipeline size

4

GPU Device Memory Requirement

What factors impact the GPU device memory
requirement and how?

• Shared data : a single storage is required

• Private data : storage is required per thread 
GPU grid size makes an impact

Some optimizations increase the memory
requirement

• Prefetching (Early copy-in and late copy-out)

• Pipelining

5

COSP

Computation Splitting (COSP)
• Split a large problem into smaller sub-problems
 memory requirement reduced

• Are there side-effects?
 YES, splitting in not always perfect

– Segregate data-types

• Data required by every sub-
problem : MemFused

• Data required only by a sub-
problem : MemSplittable

6

A B C

A B C

Copy-in Kernel Copy-out

B, C are MemSplittable, A is MemFused

B C B C B C

Time

COSP - Code Example – Scalar Product

7

#pragma omp parallel for shared(D,E,F) private(vec, pos, sum)

for (vec = 0; vec < NUM_VECTORS; vec++) {

 sum = 0;

 for(pos = 0; pos < NUM_ELEMENTS; pos++) {

 sum += D[NUM_ELEMENTS*vec + pos]* E[NUM_ELEMENTS*vec + pos];

 }

 F[vec] = sum;

}

for (split = 0; split < NUM_VECTORS/SplitSize; split++)

#pragma omp parallel for shared(D, E, F)

 private(vec, pos, sum) shared(split, SplitSize)

for (vec = 0; vec < SplitSize; vec++) {

 sum = 0;

 for(pos = 0; pos < NUM_ELEMENTS; pos++) {

 sum += D[(NUM_ELEMENTS *(vec + split*SplitSize))+ pos]

 * E[(NUM_ELEMENTS * (vec + split*SplitSize))+ pos];

 }

 F[(vec + split*SplitSize)] = sum;

}

Split Loop

Split

Pipelining

• Computation Splitting creates pipelining
opportunities

• Resources to pipeline :

– Copy-in channel

– GPU cores

– Copy-out channel

• Maximum speedup – 3*

* Considering different copy-in and copy-out channels (engines)

8

A B C

B C

B C

B C

Data -Independent
Sub-problems

A B C B C B C B C

Split Split Split Split

Time

Pipeline

Pipelining – Achievable Speedup

• Computation time : tcompute

• Time required to copy MemFused data :
tmemFused (in and out of the GPU)

• For MemSplittable data,

– tci (data copy-in time)

– tco (data copy-out time)

• Achievable Speedup

tmemFused + tci + tco + tcompute

tmemFused + max(tci , tco , tcompute)

9

Original Execution Time

Pipelined Execution Time

Pipelining - Implementation
• cudaStream : A CUDA abstraction of instruction queues
• cudaStreams act independently
• Memory copy requests across cudaStreams get serialized
• Kernel executions across cudaStreams overlap

For pipelining :
• Use 2 cudaStreams
• Create 2 device buffers per MemPrivate Data
• Create single device buffer per MemShared Data
• Place memory copy operations for the MemShared Data

out of the Split Loop
• Schedule alternate Splits on each cudaStream

10

Extending to Two GPUs

11

Copy-in
 Split 2 -
Device 0

Copy-in
 Split 3 -
Device 1

Copy-in
Split 4 -
Device 1

Copy-out -
Split 2 –
Device 0

Copy-out -
Split 3 –
Device 1

Copy-in –
Split 4 -
Device 1

Kernel –
Split 1 -
Device 0

Kernel –
Split 2 -
Device 0

Kernel –
Split 3 -
Device 1

Kernel –
Split 4 -
Device 1

cudaStream 0
– Device 0

cudaStream 1
– Device 0

cudaStream 2
– Device 1

cudaStream 3
– Device 1

Copy-out -
Split 1 –
Device 0

Copy-in
 Split 1 -
Device 0

Split
Loop

Time

Compiler Structure

12

COSP OpenMP
Analyzer

OpenMPC
Directive
Handler

Pipeliner
Tuning
Code

Generator

OpenMP
& CUDA

Optimizer

Multi-
device
Code

Generator

Memory
Transfer
Directive

Generator

Input
OpenMP(C)
Program

Output CUDA
Program
+ Tuner
RunTime Code

Cetus
Parser

Kernel
Splitter

Symbolic
Range

Analyzer

* Darker boxes are inherited from OpenMPC

Tuning Objective

Pipelining benefits

 Equality of pipeline stage sizes

However, static scheme to determine best stage size
is hard since :
• GPU systems : Intricate architecture (PCI version,

#cores, GPU memory BW)
• Kernel overlaps  Difficult to model

We propose an adaptive runtime tuning system to
choose the optimal SplitSize

13

Compute Intensive Vs. Memory-Copy
Intensive

For Compute Intensive programs, optimal SplitSize ≤ MaxThreads

For Memory Copy-Intensive programs, optimal SplitSize ≥ MaxThreads

14

0

1

2

3

4

5

6

7

9 11 13 15 17 19 21 23 25

Ex
ec

u
ti

o
n

 T
im

e
Tr

en
d

log2(SplitSize)

Vector Add (Memory Copy-Intensive)

Filterbank (Compute-Intensive)

MaxThreads

MaxThreads = No. of threads that can simultaneously coexist on a GPU

Heuristic Algorithm

On a single Split,

• Determine the Type of the kernel

• For Type 1 kernels : Larger SplitSizes work better due to the higher bandwidth usage.

• For Type 2 kernels : SplitSizes smaller than MaxThreads are the candidates

• Generate a set of candidate SplitSizes, run each to find the best

• For Type 3 kernels : Candidate set is much larger. Type 3 is uncommon.

Tuning requires extra runs, but only on a single Split  Tuning overhead is negligible
15

t1
ci t1

co

t2
ci t2

k t2
co

t1
ci Time

Type 2

t1
k

t2
co

t1
ci t1

co t1
k

t2
k

Time t1
ci

t2
ci

Type 3

tci > tk + tco OR tco > tk + tci

tk > tci + tco Other Cases

Highly Memory Copy-Intensive Highly Compute-Intensive

tci = Copy-in Time tco = Copy-out Time tk = Kernel Time

(Number in superscript is the cudaStream number)

t1
k t1

co

t2
k t2

co

t1
ci Time

Type 1

t1
ci

t2
ci

Evaluation

Setup
• GPU - Tesla M2090 GPUs (4), 6GB memory, x16

PCIe link
• CPU – AMD Opteron Processor 6282, 16 cores,

2.6 GHz, 64 GB RAM

Benchmarks
• Kernels – Black Scholes, Monte Carlo, DCT,

Filterbank, Vector Add, Scalar Product, FFT
• Applications – CFD, SRAD

16

Scalability

17

Bench
mark

DataSize
(Iteration Space)

CUDA
Time (s)

OpenMPC
Base Time (s)

%Copy-in
Time(s)

%Copy-
out

Time(s)

%Kernel
Time(s)

OpenMPC
Pipelined Time (s)

Speedup
Ideal

Speedup
Achieved

Scalar
Product

1024 x 1024 0.633 0.88807

52.19789 0.22676 47.57535

0.46297

1.91579

1.91822

1024 x1024 x2 1.267 1.7723 0.91496 1.93703

1024 x1024 x4 ---- ---- 1.73067

Monte
Carlo

1024 x32 0.00537 0.00454

21.55109 13.71958 64.72933

0.0037

1.54489

1.22733

1024 x1024 x32 *** 1.79902 1.24699 1.44268

1024 x1024 x64 *** 3.5924 2.51465 1.42859

1024 x1024 x128 ---- ---- 5.02565

Black
Scholes

1024 x16 0.00105 0.00158

46.64777 41.9736 11.37863

0.00164

2.14373

0.96344

1024 x1024 x128 1.8598 1.22591 0.87698 1.39786

1024 x1024 x256 ---- 2.457 1.73985 1.41219

1024 x1024 x384 ---- ---- 2.60183

`***' represent failure of the code due to larger-than-allowed grid sizes
used. `----' represent code failure due to out-of-memory data size errors.

Tuning Performance

18

0

1

2

3

4

5

6

7

8

9

10

0

0.5

1

1.5

2

Tu
n

in
g

O
ve

rh
ea

d
 a

s
%

 o
f

R
u

n
ti

m
e

Sp
ee

d
u

p
 (x

)

Adaptive Tuning

Compiler Naïve

Tuning Overhead (%)

Naïve scheme – Use 1024 Splits (Heuristically found to be effective)

A static scheme to select SplitSize can not be efficient

Comprehensive Results

19

0

1

2

3

4

5

6

Filterbank DCT Monte Carlo FFT

Sp
ee

d
u

p
(x

)

Pipelining

Pipelining - 2 Devices

Pipelining - 4 Devices

0

1

2

3

Scalar Product BlackScholes Vector Add SRAD CFD

Sp
ee

d
u

p
(x

)

Pipelining

Pipelining - 2 Devices

Pipelining - 4 Devices

Memory Copy-Intensive

Compute-Intensive

• Compute-intensive benchmarks show better scalability on multi-GPU
systems

• PCIe link forms a bottleneck on memory-copy intensive programs

Related Work
Out-of-card computations
• Single device image for multi-GPUs

Pipelining/Memory related
• Prefetch
• Redundant memory transfer removal
• Asynchronous computations

Execution Models
• StreamIt based approaches

20

Conclusions

We presented

• An automatic computation splitting mechanism,
COSP, that handles out-of-card computations

• A mechanism to effectively pipeline the slow CPU-
GPU data copy channels with GPU computation

• An automatic adaptive runtime tuning system to
select optimal pipeline stage size

• A porting scheme to run OpenMP applications on
multi-GPU systems

21

Future Work

• Better strategy to deal with irregular
applications

• Smart virtualization of the GPU address space
– exploiting prediction to move data back and
forth between CPU and GPU memories

22

Thank You!

23

